THE RELATIVE RICHNESS OF THE POOR?
NATURAL RESOURCES, HUMAN CAPITAL
AND ECONOMIC GROWTH

Claudio Bravo-Ortega José De Gregorio
La serie Documentos de Trabajo es una publicación del Banco Central de Chile que divulga los trabajos de investigación económica realizados por profesionales de esta institución o encargados por ella a terceros. El objetivo de la serie es aportar al debate de tópicos relevantes y presentar nuevos enfoques en el análisis de los mismos. La difusión de los Documentos de Trabajo sólo intenta facilitar el intercambio de ideas y dar a conocer investigaciones, con carácter preliminar, para su discusión y comentarios.

La publicación de los Documentos de Trabajo no está sujeta a la aprobación previa de los miembros del Consejo del Banco Central de Chile. Tanto el contenido de los Documentos de Trabajo, como también los análisis y conclusiones que de ellos se deriven, son de exclusiva responsabilidad de su(s) autor(es) y no reflejan necesariamente la opinión del Banco Central de Chile o de sus Consejeros.

The Working Papers series of the Central Bank of Chile disseminates economic research conducted by Central Bank staff or third parties under the sponsorship of the Bank. The purpose of the series is to contribute to the discussion of relevant issues and develop new analytical or empirical approaches in their analysis. The only aim of the Working Papers is to disseminate preliminary research for its discussion and comments.

Publication of Working Papers is not subject to previous approval by the members of the Board of the Central Bank. The views and conclusions presented in the papers are exclusively those of the author(s) and do not necessarily reflect the position of the Central Bank of Chile or of the Board members.
THE RELATIVE RICHNESS OF THE POOR?
NATURAL RESOURCES, HUMAN CAPITAL
AND ECONOMIC GROWTH

Claudio Bravo-Ortega
Universidad de California en Berkeley

José De Gregorio
Banco Central de Chile

Resumen
¿Cuál es el rol de los recursos naturales en el desempeño económico? ¿Existen condiciones especiales para que los recursos naturales actúen como motor del crecimiento? ¿Son los recursos naturales una maldición? En este artículo presentamos un modelo donde los recursos naturales tienen un efecto positivo en el nivel de ingreso y negativo en su tasa de crecimiento. Ponemos a prueba nuestro modelo usando datos de panel para el periodo 1970-1990. Extendemos las especificaciones típicas de las regresiones de crecimiento incorporando un término interactivo entre capital humano y recursos naturales, mostrando que países con niveles altos de capital humano pueden más que compensar el efecto negativo de la abundancia de recursos naturales en el crecimiento. También hacemos una revisión de la experiencia histórica de los países escandinavos que, a diferencia de Latinoamérica, otra región bien provista de recursos naturales, muestra cómo es posible tener un crecimiento rápido basado en recursos naturales. En general la evidencia empírica es consistente con las principales predicciones del modelo.

Abstract
What is the role of natural resources in economic performance? Are there any special conditions in which natural resources can act as the engine of growth? Are natural resources a curse? In this paper we present a model where natural resources have a positive effect on level of income and a negative effect on its growth rate. However, we show that this effect can be ameliorated by having a large level of human capital. We test our model using panel data for the period 1970-1990. We extend the usual specifications for economic growth regressions by incorporating an interaction term between human capital and natural resources, showing that countries high levels of human capital may more than offset the negative effects of the natural resource abundance on growth. We also review the historical experience of Scandinavian countries, which in contrast to Latin America, another region well endowed with natural resources, which shows how it is possible to grow fast based on natural resources. Overall the empirical evidence is consistent with the main predictions of the model.

We would like to thank Pranab Bardhan, A. De Michaelis, Julian di Giovanni, Patricio Meller, David Romer, J.P. Stijns and the participants of the Economics Seminar at the Universidad de Chile for their helpful comments. Claudio Bravo-Ortega would also like to thank CIEPLAN and the Ministry of the Economy for their support and hospitality at different stages of this research.

E-mails: clbravo@econ.berkeley.edu ; jdegrego@bcentral.cl.
1 Introduction

During the last decade many economists have returned to the old question of whether there is any relationship between the abundance of natural resources and economic growth or the levels of income. Few of them have asked under which circumstances natural resources can perform as an engine of growth. Moreover, the discussion has limited to study the effects on economic growth instead of looking at both growth of income and the level of income, with the latter more closely related to welfare. In this paper we analyze both effects. It is easy to imagine an economy where the discovery of natural resources may lead to a decline in growth, but an increase in income that ultimately raises welfare.

The economic history of the last two centuries shows mixed evidence in this regard. During the nineteenth and first half of the twentieth centuries there were several experiences of development where natural resources seem to have been the engine of economic growth (Wright, 1990; and Blomstrom and Meller 1990). However, it is hard to find successful experiences of development in the second half of the twentieth century. In fact, it is easy to find experiences where this sector has been blamed for the underdevelopment or low growth rates of the economy. This, of course, limit the ability of more recent data to underscore the whole variety of actual experiences on natural resources and development.

The mainstream literature on economic growth has focussed on technical change and on the accumulation of physical and human capital, disregarding the interaction between both factors at different economic structures. The main exception has been the research on the effects of openness on economic growth (Edwards, 1997) This situation has generated a conceptual gap in our understanding of the impact of the productive structure on economic growth.

During the seventies many economists studied the macroeconomic effects and the changes in the productive structure resulting from a shock in the natural resources sector, the so-called Dutch Disease. Nevertheless, this conceptual framework just explains the appreciation of the real exchange rate and the factor reallocation process, without deriving long run implications for economic growth. However, the idea behind the long run effects of the Dutch Disease is that the appreciation of the real exchange rate as a consequence of a natural resources boom is detrimental to an export-led growth process of development.

In order to understand the effects of the Dutch Disease on economic growth, it is necessary to identify long run mechanisms connecting the shocks on the natural resources sector, the productive structure and long run performance. Previous attempts have been developed by Matsuyama (1992), Sachs and Warner (1995), and more recently Asea and Lahiri (1999), among others. This paper tries to reduce the...
still open conceptual gap by developing a stylized model of two productive sectors that considers the dynamic effects of endogenous growth theory and the reallocative effects derived from the Dutch Disease literature. We emphasize the interaction between natural resources and human capital, and their effects on the levels of income and rates of economic growth, in order to explain why countries with abundance of natural resources and with high levels of human capital can reach a higher level of welfare. Moreover, we show that, under certain assumptions, a high level of human capital may offset the negative effects of the abundance of natural resources on economic growth.

In thinking about natural resources and development we can distinguish two main reasons why it may exert negative effects on growth. The first reason may be that weak institutions generate conditions for “voracity effects,” through which interest groups try to capture the rents from natural resources (Lane and Tornell, 1996). In this case the allocation of talents in the economy is distorted and resources are deviated to unproductive activities.

Along similar lines, but with more focus on the productive structure of the economy, the second reason is related to the allocation of resources among activities with different spillovers on aggregate growth. For example, if there are a given stock of capital that can be allocated to the exploitation of natural resources or to the production of goods subject to endogenous growth, the existence of natural resources may diminish resources available for growth-enhancing activities. We follow this second idea, but since in a world with capital mobility the constraint on available capital stock may be relaxed, we focus on human capital, which is less mobile (Barro, Mankiw and Sala-i-Martin, 1995). In most recent analysis of the growth-reducing effects of natural resources the idea of crowding-out is present (e.g., Sachs and Warner, 2001), and we follow this route.

Scandinavia is perhaps the most noticeable case of development based on natural resources, and for this reason, later in the paper we compare the experience of Scandinavia with that of Latin America. As our review indicates, since the second half of the nineteenth century, high level of human capital and closeness to Europe made possible a successful process of development for countries rich in natural resources. In this paper we attribute a special role to human capital accumulation.

In the model we present in this paper we consider the effects on the level of income and on the rate of growth of having abundance of natural resources. The model presented in the next section considers the following stylized facts:

- According to Chenery and Syrquin (1975) the participation of the natural resources production in total output and the fraction of the labor force working in this sector decreases over the course of a country’s development.

2 Even in periods with low capital mobility, there has been traditionally foreign direct investment available to exploit natural resources.
An increase in the endowment of natural resources induces a shift in the fraction of human capital working in the industrial sector towards the natural resources sector, as has been traditionally understood in the study of the Dutch Disease.

In the next section we present the model. For simplicity, we assume that the production of natural resources is subject to decreasing returns to scale, while the industrial sector is subject to decreasing returns to scale at the firm level, but there is an externality that leads to aggregate constant returns to scale (Romer, 1986). The rate of growth of the economy is a weighted average between the rate of growth of both sectors. Having a high level of human capital, the higher income attained by the economy generates faster growth despite being abundant in natural resources. In this regard we capture the idea that natural resources limit growth as long as the level of human capital is low, and hence there is not enough resources to devote to growth-enhancing activities. We could assume decreasing returns in the industrial sector by including physical capital, but that would make the model less tractable and deviate from the main effects we want to examine, namely, the role of human capital. In addition, we can presume that natural resources are also able to generate endogenous growth, for example by inducing spillovers through R&D in other activities, but we want to focus on a sector that as the economy develops starts reducing its share in total output.

In section 3 we analyze the empirical implications of the model, studying the effects of natural resources on the level of GDP per capita and on its rate of growth. We find that, when ignoring the interactions with human capital, the abundance of natural resources reduces the rate of growth, but increases income. When we add an interaction term between human capital and natural resources we find that for high levels of human capital the rate of growth also increases with the abundance of natural resources. Section 4 presents the experiences of Scandinavia and Latin America, two regions with similar per capita income by late nineteenth century and also rich in natural resources. However, economic performance in the next hundred years was very different, but also they differ significantly in the initial levels of human capital. Section 5 concludes.

2 The Basic Model

The model that we present, follows from previous work on growth developed on two-sector models and natural resources developed by Solow (1974), and further work that incorporates endogenous growth and multisector models such as Lucas (1988), Krugman (1990), Matsuyama (1992), and Farzin (1999) among others.

We consider a small open economy, with two productive sectors: Natural Resources and Industry. Both sectors utilize human capital along with the fixed endowments of specific factors in each one of the sectors. We assume that the natural
resources sector exhibits decreasing returns to human capital, while the industrial sector exhibits constant returns to scale (CRS) due to the existence of externalities. All the production is sold in the international market, and it is used to buy a third consumption good. The prices of the three goods are determined in the world market, and therefore exogenous in the model. We use the price of the industrial good as numeraire, while \(p_1 \) denotes the price of the natural resources good, and \(p_2 \) the price of the consumption good.

Thus, the production functions for the natural resources and industrial sectors can be expressed as follows:

\[
Y_{NR} = R \cdot H_R^\delta \\
Y_I = a \cdot H_I^\alpha \cdot \bar{H}_I^{1-\alpha},
\]

respectively.

We denote the capital specific to the natural resources sector by \(R \). It represents a measure of the endowment of natural resources and its impact on output. Thus, \(R \) considers factors as the quality of soil, climate, and quality of mineral deposits. The capital specific to the industrial sector is denoted by \(a \) and can be interpreted as technological (or social) infrastructure. As usual, the subscripts under \(H \) (or \(L \)) indicate the productive sector where the human capital (or labor) is allocated. Finally, the term \(\bar{H}_I^{1-\alpha} \) represents the externality in the industrial sector. To keep notation simple we omit time subscripts when possible.

Hence the economy faces the following constraint for the endowment of human capital in each period of time:

\[
H_I + H_R = H. \tag{2}
\]

In order to avoid scale effects we work with just one representative firm for each sector owned by a representative agent. We assume that although the representative agent owns both firms and the natural resources, she does not internalize the externalities in the industrial sector. We also assume that the elasticity of output with respect to human capital, perceived by the private agent, is bigger in the industrial sector than in the natural resources sector, that is, \(\alpha > \delta \). Total labor in the economy is constant and equal to \(L \), that we normalize to 1, and hence all variables are expressed in per capita terms. The proportion of labor and human capital allocated to the natural resource sector is equal to \(L_R = H_R/H \), and to the industrial sector is \(L_I = 1 - L_R = H_I/H \).

Thus, the representative agent must choose the allocation of human labor across sectors, and how much should be invested in human capital.

The agent solves the problem:
\[
Max \int_0^\infty \frac{(1-\sigma)^{-1}}{\alpha} \cdot e^{-\beta t} dt
\]
\[
st L \cdot \dot{H}_t = H_t = Y - p_2 \cdot c_t
\]
\[
Y = A \cdot (H_t)^\alpha \cdot H_t^{1-\alpha} + p_1 \cdot R \cdot H_R^\delta
\]
\[
H_I + H_R = H = L \cdot H.
\]

With this setup we derive the following five propositions that are the basis of the empirical analysis presented in the next section of the paper. The first four propositions, assume conditions for the existence of two productive sectors (Assumption 1). The solution of the model and the proofs of the propositions are provided in Appendix A.

Assumption 1 The parameters of the model are such that in equilibria both sectors have production greater than zero. This is equivalent to impose in period 0, \(H_R = H \cdot L_R = (\frac{\alpha}{p_1 \cdot R_0})^{\frac{1}{\delta - 1}} < H_0 \) and that \(\alpha a > \beta \), where \(H_0 \) represents the endowment of human capital in the economy at period 0.

Proposition 1 In the steady state the growth rate of income per capita, consumption per capita and human capital are equal to
\[
\gamma_{ss} = \frac{1}{\sigma}(\alpha \cdot a - \beta)
\]

Proof. See Appendix A. ■

Note that in the steady-state, the rate of growth of the economy is constant, and depends only on the technology used in the industrial sector and not in the endowment of natural resources. This is a direct consequence of the following proposition.

Proposition 2 In the steady state, the fraction of the labor force allocated to the natural resources sector converges asymptotically to zero. Output and human capital in the natural resource sector is constant.

Proof. See Appendix A. ■

Note that \(L_R \), the fraction of the labor force working in the natural resources sector can be expressed:
\[
L_R = \frac{1}{H} \left(\frac{p_2 \cdot R \cdot \delta}{\alpha a} \right)^{\frac{1}{\delta - 1}}
\]

The fraction of the labor force working in the natural resources sector is inversely proportional to the level of per capita human capital, \(H \), and positively related to the amount of specific factor in the natural resource sector. Hence, as long as human capital increases, the labor force in the natural resources decreases proportionately, and the level of human capital remains constant.

Now, we turn to the effect of \(R \) on the level of income.
Proposition 3 A greater level of the specific factor in the natural resources sector results in an increase in the level of income per capita.

Proof. See Appendix A. ■

The next proposition considers the growth effect of natural resources and the interplay with human capital. The proof redefines the variables in our system in order to get a system of two nonlinear differential equations, which are then linearized around the steady state of the auxiliary dynamic system.

Proposition 4 The effect of a greater level in the specific factor of the natural resources sector will imply, ceteris paribus, a lower growth rate of income per capita in the transition to the steady state. However, for economies abundant in human capital, the growth-reducing effects of an increase in the endowment of natural resources are ameliorated.

Proof. See Appendix A. ■

This proposition shows first that for low levels of human capital the growth effect of natural resources is negative, although the economy has higher income. The reason is that since the rate of growth is an average of the rates of growth in both sectors, and the natural resources sector has zero growth, the average declines. But, whenever human capital is large this composition effect is small.

To understand these effects we can use figure 1. The economy converges with an increasing growth rate to the steady state rate of growth. During this process the natural resources sector diminishes in relative importance. For two economies with the same level of human capital, the one with natural resources will have higher income, but will grow slower, as seen in figure 1. But, an economy with higher level of human capital will be “closer” to the high steady-state rate of growth. For simplicity, and to illustrate more clearly our points, we have abstracted from convergence effect, but the model can be interpreted as converging to a Solow-type growth based on the exogenous growth of productivity in the industrial sector, but with a dynamic similar to the one described here.

Another interesting issue this model allows to explain is the existence of a zero growth equilibrium in which the economy only produces in the natural resources sector. Assumption 1 insures that the economy will never specialize in natural resources. However, the next proposition analyzes what we call the “poverty trap of natural resources.” In this case we assume that given the productivity in each of the two sectors, and the initial level of human capital, the economy will produce only the natural resources sector, because it is not profitable to devote resources to the industrial sector. This is formalized in the following assumption.
Assumption 2 The parameters of the model are such that the following inequalities hold:

\[H_R = H \cdot L_R = \left(\frac{\alpha \gamma}{\beta - \delta} \right)^{\frac{1}{\gamma - 1}} > H_0 \]

\[\beta > \alpha a \]

Note that the first condition, just implies relative abundance of natural resources with respect to the specific factor in the industrial sector. While the second implies that the economy will exhaust the returns to human capital in the natural resources sector for a given level of human capital accumulation.

Proposition 5 Under the conditions of assumption 2, the economy will specialize in the production of the natural resources good, with zero growth of income per capita and zero rate of accumulation of human capital in the steady state.

Proof. See Appendix A. ■

So far, we have proved that, under the proper assumptions, an increment in the specific factor in the natural resources sector will increase the level of income per capita, but will diminish the rate of growth in the economy. However, as shown in proposition 4, it is possible to reduce this negative effect by increasing the human capital per capita. Hence, the model presented here explains the stylized facts mentioned in the introduction. Moreover, as the latter proposition shows, the economy may get stagnated in a no-growth equilibrium, when it has a low level of human capital.

Finally, an extension of the model would allow us to incorporate the impact of political economy factors on the dynamic of the economy. Suppose that initially the economy produces in both sectors, and consider the existence of interests groups that may own the rents of at least one of the specific factors. Now suppose that these groups are able to tax the return on human capital. The impact of the tax on labor will have three main consequences: first it will reduce the return and the incentives for human capital accumulation, thereby reducing the growth rate of the economy over the transition and in the steady state. Second, the lower return to human capital will induce, ceteris paribus, a larger fraction of the labor force and larger share of GDP allocated in the natural resources sector. Third, under some circumstances the extent of the tax would inhibit the development of the industrial sector driving the economy to the “poverty trap” described by Proposition 5. The same mechanisms operate when the owners of the natural resources sector are able to tax the return to the specific factor in the industrial sector. The tax charged in the specific factor will decrease its return, and the productivity of human capital, which will finally imply a lower growth rate.
3 Empirical Evidence

3.1 Previous Empirical Results

The main finding of Sachs and Warner (1995) is the robust negative relationship between economic growth and natural resources, using cross-section regressions. They corroborate this relationship with different measures of resource abundance, such as: the share of mining production in GDP, land per capita, and share of natural resource exports in GDP.\(^3\) Finally, they find that an increment in one standard deviation in the participation of natural resources exports in the GDP would imply a lower rate of growth on the order of 1% per year.

Gylfason et al. (1999) postulate that the natural resources sector creates and needs less human capital than other productive sectors, which is similar to the assumption of this paper. A larger primary sector induces an appreciated currency which makes the development of a skill intensive sector difficult. Thus, the model they develop predicts an inverse relationship between real exchange rate volatility and human capital accumulation and, hence, growth. Similarly, they predict a positive relationship between external debt and profitability in the secondary sector and also growth. However, the evidence they provide regarding these two explanatory variables is mixed; exchange rate volatility is not statistically significant and external debt is statistically significant but with the wrong sign.

According to Gylfason et al. (1999) the share of the labor force in the primary sector can be used as an explanatory variable. However, they find it to be statistically significant only when different measures of human capital are absent. This result may be due to high multicolinearity, which can be explained by our model, where the fraction of the labor force (or human capital) employed in the primary sector depends on the level of human capital. Thus, Gylfason et al. (1999) find that “an increase in either the share of the primary sector in the labor force or in the share of the primary exports on total exports from 5% to 30% from one country or period to another reduces per capita growth by about 0.5% percent per year, other things

\(^3\)It is noteworthy to mention that the inclusion of the participation of natural resources exports over GDP as an explanatory variable, can be derived directly from the model we developed. For more details see appendix A.
being equal”. In short, the model we presented is consistent with the results found by Gylfason et al. (1999) related to the size of the labor force in the primary sector.

In a multisectoral study, Feenstra et al. (1997) test the hypothesis of semi-endogenous growth using bilateral trade data between the U.S. and South Korea and the U.S. and Taiwan. Their study focuses on sixteen industrial sectors for which they test whether changes in the relative varieties of inputs affects the growth rate of the relative total factor productivity between South Korea and Taiwan. They classify seven of these sectors as primary and nine as secondary. In particular, they consider firms using raw materials and natural resources as inputs, as belonging to the primary sector. Their results show that variety of inputs affects the growth rate of the total factor productivity in seven secondary sectors and only one primary sector. The mining sector displays a positive relationship, although this effect disappears after controlling for imperfect competition. The remaining sectors in the primary sector present mixed evidence, with either positive, negative or insignificant effect of variety of inputs on the growth rate of the total factor productivity.

3.2 Empirical Methodology and Results

We estimate the main empirical implications of the model using panel data for the period 1970-1990. The data used in the regressions are from the Penn World Tables, the Barro and Lee Educational Data Set (1994) and World Tables from World Bank (1993-1996). We describe the data and their sources in more details in the Appendix B.

In a first stage, similarly to Barro and Sala-i-Martin (1995), we regress the growth rate of GDP per capita on explanatory variables, using seemingly unrelated regression (SUR) with four sub-periods. This technique allows for country random effects that are correlated across periods. In a second stage we estimate random effects regressions utilizing instrumental variables in order to overcome the possible bias introduced by the measurement error in our proxy for human capital.5.

Given that we are interested in determining the possible effect of natural resource abundance on economic growth, we extend traditional growth regressions incorporating the share of natural resources exports in the GDP as a proxy of resource abundance (Natural).6 As control variables we use human capital measured by the average schooling years for the total population over 25 years (H), government expenditure as fraction of GDP (G), openness measured by the fraction of exports and

4 Due to the limited availability of data we can not estimate our regressions using some other procedures recommended in the literature, such as GMM, as proposed by Caselli, Esquivel and Lefort (1996).

5 For a revision of this point see for example Krueger and Lindahl (1999).

6 As most of the recent literature we use as data source World Tables CD Rom and as natural resources exports, the sum of the exports in the categories: fuels and non-fuel primary products.
imports over GDP (OPEN), terms of trade shocks (TT), investment as fraction of GDP (I) and initial income (y). All the variables are measured at the beginning of each period of the panel. However, as a robustness test we also estimate regressions using average values of some variables for each period of the panel. In all our estimations we use period dummies and regional dummies for Africa and Latin America (DREG).8

Our benchmark regression for the rate of growth, γ_y, is the traditional growth equation extended by the inclusion natural resources, as estimated by several authors. This regression can be expressed as:

$$
\gamma_{y,t} = \alpha_0 + \alpha_1 \cdot y_{i,t} + \alpha_2 \cdot I_{i,t} + \alpha_3 \cdot H_{i,t} + \alpha_4 \cdot \text{Natural}_{i,t} + \\
+ \alpha_5 \cdot G_{i,t} + \alpha_6 \cdot OPEN_{i,t} + \alpha_7 \cdot TT_{i,t} + DREG_I + \varepsilon_{i,t} \tag{5}
$$

where i is a country index and t indicates the number of the cross section regression of the panel.

In a second stage, we include an interaction effect between human capital and natural resources. Therefore, we estimate the following regression:

$$
\gamma_{y,t} = \alpha_0 + \alpha_1 \cdot y_{i,t} + \alpha_2 \cdot I_{i,t} + \alpha_3 \cdot H_{i,t} + \alpha_4 \cdot \text{Natural}_{i,t} + \\
+ \alpha_5 \cdot G_{i,t} + \alpha_6 \cdot OPEN_{i,t} + \alpha_7 \cdot TT_{i,t} + \alpha_8 H_{i,t} \text{Natural}_{i,t} + DREG_I + \varepsilon_{i,t} \tag{6}
$$

Equation (6) incorporates the interaction term between natural resources and human capital. This term allows us to test whether the negative effect of natural resources on the rate of growth decreases with human capital. Hence, we must interpret the participation of natural resources exports over GDP as proxy of the specific factor in our model, R.

Before proceeding with regression analysis, figures 2 and 3 show the scatterplots between growth and income against natural resource abundance in our sample of countries. It appears a negative relationship between growth and natural resource abundance. In the case of income, there seems to be no bivariate relationship, although as shown below this relationship is positive when controlling by other variables.

In Tables 1 and 2 we test whether there is a negative relation between natural resources and economic growth according to equation (5). In regressions 1.1 and 1.3 for natural

7 We replicate the measure of terms of trade shock developed by Easterly, Pritchett and Summers (1993). See Appendix B.

8 For a detailed discussion on the control variables see Sachs and Warner (1995) and Temple (1999). In our empirical specification we do not rule out the conditional converge hypothesis, hence we included the lag value of income per capita. Given the theoretical framework, it may be possible to recover conditional convergence to a given growth rate after including decreasing marginal return to capital.
we use the average schooling years in the male population over age 25 as a measure of human capital, while for regressions 1.2 and 1.4 we use the schooling years of the total population. Regressions 1.1 and 1.2 use the average values for the government expenditure and openness. However, this might result in endogeneity bias, we therefore re-estimate these equations using each period’s initial values, results that are reported in regressions 1.3 and 1.4. Furthermore, we also estimated, but do not report, the same regressions but using as a measure of human capital the average secondary schooling years. In all cases we obtained similar results.

We replicated the regressions reported so far, but use the average investment and the average participation of natural resources in the GDP. We obtained similar results in terms of the magnitude and significance of natural resources and other variables. The exception to this result was investment, whose associated coefficient duplicated its magnitude and maintained its significance when its average value is utilized as a regressor. Overall it is important to note the robust statistical significance and the consistent sign of the natural resource coefficient regarding the different measures of human capital and different sets of control variables used.

The results of table 1 show an elasticity of the growth rate with respect to the relative abundance of natural resources between -0.04 and -0.05. The estimations largely support the hypothesis that natural resources affect growth through its impact on the productive structure, even when our estimations are controlled by investment, trade policy, fiscal policy and shocks to the terms of trade.

Finally, regression 1.6 shows a positive relationship between relative abundance of natural resources and levels of per capita income after controlling for the same set of variables as before with the obvious exception of the lag value of income. Thus, the empirical evidence shown in table 1 confirms two of the main predictions of the model: the positive effect of natural resource abundance over per capita income and the negative effect on growth rates.

Table 2 reports the results of our estimations using instrumental variables. These are used in order to overcome the measurement errors in our human capital variables, which has been documented by Krueger and Lindahl (1999). We use as instruments the ten years lag value of our measure of human capital, the ten-year lag value of government expenditure in education, and the ten-year lag value of the average years of higher education for the population over twenty five years. Further, Hausman specification test confirms the need of correcting the measurement error. However, we should note that all the coefficients show very small variations in their magnitudes, with the exception of the natural resources coefficient which increases its magnitude in the regressions on growth and on the level of per capita income.

Finally, we must note that in specifications 1.5 and 2.2 and 2.4 we have not controlled for investment, while in all other specifications we do. We interpret the stability in the natural resources coefficient and its significance as indicative that
Table 1: Determinants of Economic Growth (1.1-1.5) and Determinants of Level of Income (1.6). SUR.

<table>
<thead>
<tr>
<th></th>
<th>1.1 Growth</th>
<th>1.2 Growth</th>
<th>1.3 Growth</th>
<th>1.4 Growth</th>
<th>1.5 Growth</th>
<th>1.6 Income Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Income</td>
<td>-0.018</td>
<td>-0.018</td>
<td>-0.017</td>
<td>-0.017</td>
<td>-0.016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.003)***</td>
<td>(0.003)***</td>
<td>(0.003)***</td>
<td>(0.003)**</td>
<td>(0.003)***</td>
<td></td>
</tr>
<tr>
<td>Openness</td>
<td>0.025</td>
<td>0.025</td>
<td>0.019</td>
<td>0.019</td>
<td>0.019</td>
<td>0.293</td>
</tr>
<tr>
<td></td>
<td>(0.005)***</td>
<td>(0.005)***</td>
<td>(0.005)***</td>
<td>(0.005)**</td>
<td>(0.005)***</td>
<td>(0.086)***</td>
</tr>
<tr>
<td>Investment</td>
<td>0.056</td>
<td>0.056</td>
<td>0.054</td>
<td>0.055</td>
<td>1.255</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.025)**</td>
<td>(0.025)**</td>
<td>(0.025)**</td>
<td>(0.025)**</td>
<td>(0.337)***</td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td>-0.106</td>
<td>-0.109</td>
<td>-0.087</td>
<td>-0.090</td>
<td>-0.093</td>
<td>-1.146</td>
</tr>
<tr>
<td></td>
<td>(0.022)***</td>
<td>(0.022)***</td>
<td>(0.022)***</td>
<td>(0.022)**</td>
<td>(0.022)***</td>
<td>(0.315)***</td>
</tr>
<tr>
<td>Natural Res.</td>
<td>-0.044</td>
<td>-0.043</td>
<td>-0.046</td>
<td>-0.045</td>
<td>-0.043</td>
<td>0.583</td>
</tr>
<tr>
<td></td>
<td>(0.014)***</td>
<td>(0.014)***</td>
<td>(0.014)***</td>
<td>(0.014)**</td>
<td>(0.015)***</td>
<td>(0.196)***</td>
</tr>
<tr>
<td>Human Capital</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>1.800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.015)***</td>
<td></td>
</tr>
<tr>
<td>Human (male)</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>1.863</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.015)***</td>
<td></td>
</tr>
<tr>
<td>Shock Terms</td>
<td>0.182</td>
<td>0.180</td>
<td>0.178</td>
<td>0.174</td>
<td>0.159</td>
<td>1.863</td>
</tr>
<tr>
<td></td>
<td>(0.046)***</td>
<td>(0.046)***</td>
<td>(0.048)***</td>
<td>(0.047)***</td>
<td>(0.047)***</td>
<td>(0.511)***</td>
</tr>
<tr>
<td>of Trade</td>
<td>0.23(79)</td>
<td>0.23(80)</td>
<td>0.19(79)</td>
<td>0.19(80)</td>
<td>0.12(80)</td>
<td>0.77(80)</td>
</tr>
<tr>
<td></td>
<td>(0.047)***</td>
<td>(0.047)***</td>
<td>(0.047)***</td>
<td>(0.047)***</td>
<td>(0.047)***</td>
<td>(0.511)***</td>
</tr>
<tr>
<td>R^2 (Obs)</td>
<td>0.34(92)</td>
<td>0.33(92)</td>
<td>0.30(92)</td>
<td>0.29(92)</td>
<td>0.29(92)</td>
<td>0.82(92)</td>
</tr>
<tr>
<td></td>
<td>(0.33(82))</td>
<td>(0.33(82))</td>
<td>(0.33(82))</td>
<td>(0.33(82))</td>
<td>(0.33(82))</td>
<td>(0.81(82))</td>
</tr>
</tbody>
</table>

Standard errors in parentheses; * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. All the regressions estimated with temporal and regional dummies for African and Latin American countries. Coefficients and standard errors rounded to the last decimal. All the regressions estimated with regional dummies for African and Latin American countries.
Table 2: Determinants of Economic Growth (2.1-2.4) and Determinants of Level of Income (2.5). Instrumental Variables estimations.

<table>
<thead>
<tr>
<th></th>
<th>2.1 Growth</th>
<th>2.2 Growth</th>
<th>2.3 Growth</th>
<th>2.4 Growth</th>
<th>2.5 Income Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Income</td>
<td>-0.02</td>
<td>-0.018</td>
<td>-0.019</td>
<td>-0.017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)***</td>
<td>(0.004)***</td>
<td>(0.004)***</td>
<td>(0.004)***</td>
<td></td>
</tr>
<tr>
<td>Openess</td>
<td>0.020</td>
<td>0.020</td>
<td>0.021</td>
<td>0.021</td>
<td>0.202</td>
</tr>
<tr>
<td></td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.087)**</td>
</tr>
<tr>
<td>Investment</td>
<td>0.057</td>
<td>0.058</td>
<td>1.192</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.027)**</td>
<td>(0.026)**</td>
<td></td>
<td>(0.289)***</td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td>-0.094</td>
<td>-0.097</td>
<td>-0.098</td>
<td>-0.100</td>
<td>-0.787</td>
</tr>
<tr>
<td></td>
<td>(0.025)***</td>
<td>(0.025)***</td>
<td>(0.025)***</td>
<td>(0.024)***</td>
<td>(0.303)**</td>
</tr>
<tr>
<td>Natural Res.</td>
<td>-0.059</td>
<td>-0.057</td>
<td>-0.059</td>
<td>-0.057</td>
<td>0.497</td>
</tr>
<tr>
<td></td>
<td>(0.016)***</td>
<td>(0.016)***</td>
<td>(0.015)***</td>
<td>(0.015)***</td>
<td>(0.209)**</td>
</tr>
<tr>
<td>Human</td>
<td>0.003</td>
<td>0.004</td>
<td>0.208</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td></td>
<td>(0.001)***</td>
<td>(0.017)***</td>
</tr>
<tr>
<td>Human (male)</td>
<td>0.004</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock Terms</td>
<td>0.193</td>
<td>0.172</td>
<td>0.183</td>
<td>0.162</td>
<td>1.003</td>
</tr>
<tr>
<td></td>
<td>(0.049)***</td>
<td>(0.048)***</td>
<td>(0.048)***</td>
<td>(0.047)***</td>
<td>(0.386)**</td>
</tr>
<tr>
<td>R2 overall</td>
<td>0.41</td>
<td>0.4</td>
<td>0.40</td>
<td>0.39</td>
<td>0.78</td>
</tr>
<tr>
<td>Observations</td>
<td>318</td>
<td>318</td>
<td>319</td>
<td>319</td>
<td>329</td>
</tr>
</tbody>
</table>

Standard errors in parentheses; * significant at 10 percent ; ** significant at 5 percent; *** significant at 1 percent. All the regressions estimated with regional dummies for African and Latin American countries.
the negative effect of natural resources on growth does not go through the investment channel but through the relative productivity among sectors, and consequently through their relative sizes.9

The values of the parameters of tables 1 and 2 indicate that an increase in 10 percentage points in the ratio of exports of natural resources over GDP would reduce growth by about 0.4% to 0.6% a year, but would increase national per capita income between 5% and 6%. But as presented below, the effect on growth depends on the level of human capital.

Table 3: Determinants of Economic Growth. Interaction Effect Among Natural Resources and Human Capital. SUR.

<table>
<thead>
<tr>
<th></th>
<th>3.1</th>
<th>3.2</th>
<th>3.3</th>
<th>3.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Income</td>
<td>−0.018</td>
<td>−0.014</td>
<td>−0.017</td>
<td>−0.013</td>
</tr>
<tr>
<td></td>
<td>(0.003)***</td>
<td>(0.003)***</td>
<td>(0.003)***</td>
<td>(0.003)***</td>
</tr>
<tr>
<td>Openness</td>
<td>0.025</td>
<td>0.026</td>
<td>0.019</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.005)***</td>
<td>(0.005)***</td>
<td>(0.005)***</td>
<td>(0.005)***</td>
</tr>
<tr>
<td>Investment</td>
<td>0.057</td>
<td>0.069</td>
<td>0.055</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>(0.025)***</td>
<td>(0.024)***</td>
<td>(0.025)**</td>
<td>(0.025)***</td>
</tr>
<tr>
<td>Government</td>
<td>−0.108</td>
<td>−0.106</td>
<td>−0.089</td>
<td>−0.085</td>
</tr>
<tr>
<td></td>
<td>(0.022)***</td>
<td>(0.021)***</td>
<td>(0.022)***</td>
<td>(0.022)***</td>
</tr>
<tr>
<td>Natural Res.</td>
<td>−0.052</td>
<td>−0.080</td>
<td>−0.052</td>
<td>−0.082</td>
</tr>
<tr>
<td></td>
<td>(0.026)***</td>
<td>(0.022)***</td>
<td>(0.027)**</td>
<td>(0.023)***</td>
</tr>
<tr>
<td>Human</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.001)**</td>
<td>(0.001)**</td>
<td>(0.001)**</td>
<td>(0.001)**</td>
</tr>
<tr>
<td>Human-Nat Res</td>
<td>0.002</td>
<td>0.009</td>
<td>0.002</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)***</td>
<td>(0.006)</td>
<td>(0.005)*</td>
</tr>
<tr>
<td>Shock Terms</td>
<td>0.181</td>
<td>0.166</td>
<td>0.174</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>(0.046)***</td>
<td>(0.045)***</td>
<td>(0.047)***</td>
<td>(0.047)***</td>
</tr>
<tr>
<td>of Trade</td>
<td>0.23(80)</td>
<td>0.24(80)</td>
<td>0.19(80)</td>
<td>0.20(80)</td>
</tr>
<tr>
<td></td>
<td>0.27(89)</td>
<td>0.24(89)</td>
<td>0.20(89)</td>
<td>0.18(89)</td>
</tr>
<tr>
<td></td>
<td>0.33(92)</td>
<td>0.30(92)</td>
<td>0.29(92)</td>
<td>0.27(92)</td>
</tr>
<tr>
<td></td>
<td>0.33(82)</td>
<td>0.35(82)</td>
<td>0.33(82)</td>
<td>0.32(82)</td>
</tr>
</tbody>
</table>

Standard errors in parentheses; * significant at 10 percent; ** significant at 5 percent; *** significant at 1 percent. All the regressions estimated with regional dummies for African and Latin American countries.

9Consistently Gylfason et al (1999) find that the share of the labor force employed in the primary sector (farming, forestry, hunting, and fishing) affects negatively the rates of growth. Indeed, they found this variable more robust than the measures of human capital they utilized.
Table 3 shows the effect of the interaction between natural resources and human capital. In a similar manner to the results reported in table 1, in regressions 3.1 and 3.2 we use average values of the government expenditure and openness. Due to the possible endogeneity problems of the previous specifications, regressions 3.3 and 3.4 reestimate them using the values of each variable at the beginning of each period.

As we previously mentioned, it is expected that higher levels of human capital reduce the negative effect of natural resources on growth. Thus, equations 3.1 to 3.4 include the interaction between natural resources and human capital. Although in regression 3.1 and 3.3 the coefficient associated with the interaction term has the correct sign it is statistically insignificant. In the regressions 3.2 and 3.4, we follow the specification derived from proposition 4, just keeping the interaction variable, without considering the direct effect of human capital on growth. For this specification the coefficient for the interaction term has p-values of 6 percent in both cases, keeping its predicted positive sign.

Given the economic significance of the coefficient of the interaction term we investigate whether it would be feasible not just to decrease but to change the sign of the effect of natural resources on growth. Therefore, based on the coefficient of the interaction term, we solve for the number of schooling years such that it is possible to recover a net positive effect of natural resources on growth. This is equivalent to recover from our estimations a threshold for H such that:

$$\frac{d\gamma_y}{d\text{Natural}} = \alpha_4 - \alpha_8 \cdot \text{Human} \geq 0 \quad (7)$$

According to regression 3.2 this threshold is 9.06 years of average schooling for the population over 25 years, while for regression 3.4 this threshold is increased to 9.36 years. These results indicate that having a positive level of human capital offsets the negative effects on growth of an increase in natural resources, and as is implied from our model, the larger the level of human capital, the larger the offsetting effects of human capital.

Moreover, the evidence is even stronger than what is implied from our model, in the sense that a level of human capital large enough, above 9 years according to our results of Table 3, not only offsets partially the negative effect on growth of natural resources, but outweighs them. That is, more natural resources actually increase growth if human capital is large.

Table 4 reports the results of the estimations of the above specifications reported in Table 3, but using instrumental variables. This time when the interaction term is present together with the human capital variable neither is statistically significant, but the null hypothesis that considers both coefficients equal to zero is rejected. Moreover,

10The Wald Test with the null hypothesis that both coefficients associated with human capital are equal to zero, is rejected with a p-value of 0.01 in both equations.
Table 4: Determinants of Economic Growth. Interaction Effect Among Natural Resources and Human Capital. Instrumental Variables estimations.

<table>
<thead>
<tr>
<th></th>
<th>4.1</th>
<th>4.2</th>
<th>4.3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growth</td>
<td>Growth</td>
<td>Growth</td>
</tr>
<tr>
<td>Initial Income</td>
<td>-0.019</td>
<td>-0.019</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(0.004)***</td>
<td>(0.004)***</td>
<td>(0.003)***</td>
</tr>
<tr>
<td>Openness</td>
<td>0.021</td>
<td>0.021</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
</tr>
<tr>
<td>Investment</td>
<td>0.069</td>
<td>0.074</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028)**</td>
<td>(0.028)***</td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td>-0.094</td>
<td>-0.090</td>
<td>-0.091</td>
</tr>
<tr>
<td></td>
<td>(0.025)***</td>
<td>(0.026)***</td>
<td>(0.027)***</td>
</tr>
<tr>
<td>Natural Res.</td>
<td>-0.139</td>
<td>-0.172</td>
<td>-0.180</td>
</tr>
<tr>
<td></td>
<td>(0.073),</td>
<td>(0.038)***</td>
<td>(0.040)***</td>
</tr>
<tr>
<td>Human</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human-Natural Res</td>
<td>0.020</td>
<td>0.028</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.009)***</td>
<td>(0.009)***</td>
</tr>
<tr>
<td>Shock Terms</td>
<td>0.196</td>
<td>0.203</td>
<td>0.183</td>
</tr>
<tr>
<td></td>
<td>(0.049)***</td>
<td>(0.049)***</td>
<td>(0.049)***</td>
</tr>
<tr>
<td>of Trade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2 overall</td>
<td>0.40</td>
<td>0.38</td>
<td>0.36</td>
</tr>
<tr>
<td>Observations</td>
<td>319</td>
<td>319</td>
<td>321</td>
</tr>
</tbody>
</table>

Standard errors in parentheses * significant at 10 percent ; ** significant at 5 percent; *** significant at 1 percent. All the regressions estimated with regional dummies for African and Latin American countries.
the coefficient associated to the interaction term has higher statistical significance than the one associated to human capital. As in Table 3, we find that always human capital offsets the negative effects of natural resources on economic growth, and this offsetting effect is increasing in the level of human capital. Moreover, it is possible that this negative effect turns to be positive for economies with large levels of human capital.

Based on the coefficients estimated in equations 4.1 and 4.2 we obtain that 6.95 and 6.14 are the minimum required schooling years, for male population and total population, respectively, for having a net positive effect of natural resources on growth.

Table 5 shows the list of countries whose level of human capital during the sample period, and whose data are available throughout the full period, is above the threshold that makes natural resources to exert a positive effect on growth. For the threshold we consider the lowest one for years of schooling of total population, which is 6.14 years. Table 5 also shows the participation of the natural resources exports in their GDP \(\frac{\hat{X}_{NR}}{Y} \). At a glance, it is interesting to note the presence of countries whose participation of natural resources in the GDP is above the average of the sample. We identified them with an asterisk.

An most striking fact from table 5 is a list of countries that are widely known to be richly endowed with natural resources, although the share of exports of primary products on GDP is sometimes small. In this group we recognize Australia, Belgium, Canada, Denmark, Finland, New Zealand, Norway, Sweden and USA. With respect to the experience of the United States, G. Wright (1990) established that for the period 1880-1920 the most distinctive characteristic of the American exports was intensity in non-reproducible natural resources. Nevertheless, for the period 1879-1899, he finds that net manufacturing exports depend negatively on natural resources, although for the period 1909-1940 this is reversed. Can this results be explained by the human capital accumulation process? The evidence in this paper supports such a hypothesis. Certainly, whether the same history applies and to which countries among those shown in table 5 deserves a closer look, and may comprise our future research.

In short, the evidence we found seems to indicate that natural resources are damaging for economic growth in countries with low levels of human capital. Our model predicts that this effect would materialize by drawing resources from other economic sectors capable of generating further economic growth. However, as the process of development goes on, the accumulation of human capital may eliminate this effects. Hence, the impact of natural resources could be offset through the accumulation of human capital.
Table 5: Countries whose Human Capital would Cancel the negative effect of Natural Resources.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Zealand</td>
<td>9.69</td>
<td>0.17*</td>
<td>11.16</td>
<td>0.13</td>
<td>12.14</td>
<td>0.19*</td>
<td>12.04</td>
<td>0.19*</td>
</tr>
<tr>
<td>U.S.A.</td>
<td>10.14</td>
<td>0.01</td>
<td>10.77</td>
<td>0.02</td>
<td>11.89</td>
<td>0.03</td>
<td>11.79</td>
<td>0.01</td>
</tr>
<tr>
<td>Norway</td>
<td>6.76</td>
<td>0.10</td>
<td>10.19</td>
<td>0.10</td>
<td>10.32</td>
<td>0.22*</td>
<td>10.38</td>
<td>0.24*</td>
</tr>
<tr>
<td>Canada</td>
<td>8.55</td>
<td>0.09</td>
<td>9.50</td>
<td>0.10</td>
<td>10.16</td>
<td>0.12</td>
<td>10.37</td>
<td>0.10</td>
</tr>
<tr>
<td>Denmark</td>
<td>9.63</td>
<td>0.10</td>
<td>9.91</td>
<td>0.10</td>
<td>10.14</td>
<td>0.11</td>
<td>10.33</td>
<td>0.12</td>
</tr>
<tr>
<td>Australia</td>
<td>10.09</td>
<td>0.09</td>
<td>10.01</td>
<td>0.09</td>
<td>10.08</td>
<td>0.10</td>
<td>10.24</td>
<td>0.11</td>
</tr>
<tr>
<td>Finland</td>
<td>8.34</td>
<td>0.07</td>
<td>8.81</td>
<td>0.04</td>
<td>9.61</td>
<td>0.08</td>
<td>9.49</td>
<td>0.06</td>
</tr>
<tr>
<td>Sweden</td>
<td>7.47</td>
<td>0.05</td>
<td>7.90</td>
<td>0.05</td>
<td>9.47</td>
<td>0.05</td>
<td>9.45</td>
<td>0.06</td>
</tr>
<tr>
<td>Israel</td>
<td>7.62</td>
<td>0.04</td>
<td>8.15</td>
<td>0.03</td>
<td>9.14</td>
<td>0.04</td>
<td>9.41</td>
<td>0.04</td>
</tr>
<tr>
<td>Switzerland</td>
<td>6.22</td>
<td>0.03</td>
<td>6.26</td>
<td>0.02</td>
<td>9.67</td>
<td>0.03</td>
<td>9.09</td>
<td>0.02</td>
</tr>
<tr>
<td>U.K.</td>
<td>7.32</td>
<td>0.03</td>
<td>8.17</td>
<td>0.03</td>
<td>8.35</td>
<td>0.06</td>
<td>8.65</td>
<td>0.07</td>
</tr>
<tr>
<td>Netherlands</td>
<td>7.67</td>
<td>0.15*</td>
<td>7.90</td>
<td>0.18*</td>
<td>8.20</td>
<td>0.21*</td>
<td>8.57</td>
<td>0.26*</td>
</tr>
<tr>
<td>W Germany</td>
<td>8.14</td>
<td>0.02</td>
<td>8.21</td>
<td>0.02</td>
<td>8.46</td>
<td>0.03</td>
<td>8.54</td>
<td>0.04</td>
</tr>
<tr>
<td>Japan</td>
<td>6.80</td>
<td>0.01</td>
<td>7.29</td>
<td>0.00</td>
<td>8.17</td>
<td>0.01</td>
<td>8.46</td>
<td>0.00</td>
</tr>
<tr>
<td>Ireland</td>
<td>6.52</td>
<td>0.14*</td>
<td>6.73</td>
<td>0.19*</td>
<td>7.61</td>
<td>0.18*</td>
<td>8.01</td>
<td>0.16*</td>
</tr>
<tr>
<td>Iceland</td>
<td>6.37</td>
<td>0.27*</td>
<td>6.86</td>
<td>0.21*</td>
<td>7.40</td>
<td>0.25*</td>
<td>7.89</td>
<td>0.25*</td>
</tr>
<tr>
<td>Variable Average</td>
<td>3.83</td>
<td>0.16</td>
<td>3.99</td>
<td>0.19</td>
<td>4.50</td>
<td>0.20</td>
<td>4.91</td>
<td>0.16</td>
</tr>
<tr>
<td>Variabel S.D.</td>
<td>2.61</td>
<td>0.16</td>
<td>2.78</td>
<td>0.19</td>
<td>2.88</td>
<td>0.20</td>
<td>2.84</td>
<td>0.14</td>
</tr>
<tr>
<td>Sample Average</td>
<td>3.98</td>
<td>0.13</td>
<td>4.13</td>
<td>0.14</td>
<td>4.64</td>
<td>0.17</td>
<td>5.23</td>
<td>0.13</td>
</tr>
<tr>
<td>Sample S.D.</td>
<td>2.68</td>
<td>0.11</td>
<td>2.88</td>
<td>0.14</td>
<td>2.99</td>
<td>0.15</td>
<td>2.89</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Countries whose natural resources exports as fraction of GDP are greater than the sample average are indicated with an asterisk. All the reported countries are included in our sample, which implies all the variables are available for at least one period of the panel.
4 Human Capital and Natural Resource: Scandinavia vs. Latin America

Our econometric results highlight that there is no mechanical relationship between abundance of natural resources and economic growth. Furthermore, our results show that abundance of human capital is important in determining whether natural resources are a curse or a blessing to economic growth. But there are also long term experiences that show differences in patterns of development with similar starting points in terms of income levels and abundance of natural resources. In this section we compare the different experiences of Scandinavia and Latin America.\(^{11}\)

A closer look at the history of Scandinavia and Latin America shows that during the late nineteenth century and the early twentieth both groups of countries enjoyed similar levels of GDP per capita and both were mostly exporters of natural resources. In fact, in 1870 Finland, Norway and Sweden had respective per capita incomes of $1107, $1303 and $1664, while Argentina and Chile had $1311 and $1153 dollars per capita, respectively. However, their long run evolution was quite different. Scandinavian countries developed, while Latin American countries did not. By 1990 the divergence in income levels was striking. While Finland, Norway and Sweden had incomes per capita of $16604, $16897 and $17695 respectively, Argentina and Chile had fell far behind with $6581 and $6380 dollars.(Table 6).\(^{12}\)

There are many causes to explain the different growth outcomes, and it is beyond the scope of this paper to analyze all of them. Here, we emphasize the most common factors identified in the literature, but also we stress the differences in their initial endowment of human capital, which, has not been sufficiently weighted, despite the large differentials across regions (Table 7).

The literature has focused on explaining how enlarging some markets may have allowed to exploit scale economies, and hence, the enlargement of those markets may have spurred to the rest of the economy. It has been widely claimed that the success of the Scandinavian transformation relies in how open theses economies were. O'Rourke and Williamson (1995) establish that most of the Sweden Catch up was due to mass migration, international capital flows and trade, and that this experience does appear to apply to the rest of Scandinavia. This explanation attributes a modest importance to the role played by the relatively high level of educated population in the Scandinavian countries. Therefore, considering that the Scandinavian countries were relatively small with respect to the European population, it is highly likely that international trade played a role, as attributed in the big push theory of Rosenstein-Rodan later formalized in Murphy, Shleifer and Vishny (1989)), by enlarging the size of the market for domestically produced goods. In this respect, regardless their trade

\(^{11}\)For further details see Bravo-Ortega (1999) and Blomstrom and Meller (1990).

\(^{12}\)All figures come from Maddison (1995).
policies, it is also highly likely that Latin American countries were in an unfavorable situation just because of their geographical location, despite of the tremendous fall in freight rates during the nineteenth century.13

Nevertheless, it has not been widely discussed in the literature that not only Scandinavian countries experienced high rates of growth during the late nineteenth century—during the so called Scandinavian catch up—but also some Latin American ones. Despite the fact that Latin America as a whole didn’t catch up the European countries, Argentina and Chile experienced high rates of growth that put them in the late twenties with incomes per capita higher that those of Italy, Finland, Norway and Spain. In the case of Argentina and Chile international trade played also a fundamental role. Specifically, the openness of their economies and comparative advantages in the production of meat and wheat for Argentina and nitrates for Chile. Therefore, openness played an important role in the process of growth in the early twentieth century, both in Scandinavia, and in Argentina and Chile. However, it is difficult to explain the persistence of the growth in Scandinavia as compared to that of Latin America without noticing the important educational gap between both groups of countries for the period 1870-1910, and the fact that this gap remained large during the whole twentieth century.

Bravo-Ortega (1999) also argues that despite some common characteristics, both groups of countries had important differences in terms of income inequality, access to education, trade policies and geographical location. By the beginning of the nineteenth century, Scandinavian countries had developed land distributions and educational reforms. During that time, there were no similar transformations in Latin America. In terms of trade policies, while Scandinavian countries until 1900, tended consistently towards free trade, most Latin American governments (except Argentina and Chile) relied on tariffs on international trade as their principal source of income. Thus, by the late nineteenth century, both groups of countries had different structural conditions for accommodating the consequences of international trade.

The comparison of the experiences confirm that education mattered in the nineteenth century. The role developed by educational levels was important in the development of new industrial activities in Scandinavia and in the economic and political accommodation of external shocks. A well educated labor force facilitated the movements of workers across economic activities and facilitates the sectoral restructuring as new industrial activities develop in the process of exploiting natural resources. Some examples of the benefits of this educational advantage are evident in the study of the changes in the industrial structure of Scandinavian countries during the late nineteenth century. Among others, we can mention the Danish shift from the exports of grains to livestock in the 1870s, the Swedish and Norwegian switch from lumbering

13For a detailed description on how was the evolution of transport costs for Latin American countries in this period see Williamson (1998).
exports to pulp, and the Swedish adoption and improvement of British metallurgical techniques that allowed them to develop the iron and steel industries. What in Latin America would have been a serious social crisis, as it was with the depression of nitrates production and the mass migration of poorly educated people to the cities in Chile, was for Scandinavia a “Schumpeterian” crisis.

An alternative interpretation is that access to primary education is a good proxy for reduced income inequality in Scandinavia, which contributed to enlarging domestic market and helping to the development of new sectors.

Of course, there are many reasons why regions that more than a hundred years ago were similar in terms of income per capita and abundance of natural resources had very different patterns of development and economic growth, but clearly a salient difference, as discussed in the model and the empirics of this paper, was the level of human capital.

5 Conclusion

We find an inverse relationship between economic growth and the relative abundance of natural resources and a positive relationship between levels of income and natural resources. These findings agree with the main predictions of our model. Moreover, in contrast to other empirical work, we find statistical evidence of a positive relationship between human capital and economic growth, after controlling for natural resource abundance. Based on the model’s predictions, we also extend the usual specifications for economic growth regressions by incorporating an interaction term between human capital and natural resources. This exercise allows us to recover a list of countries that were in the past, or are in the present relatively rich in natural resources and human capital, and whose levels of human capital more than offset the negative effect of the natural resource abundance on growth.

The results indicate that natural resources are damaging for economic growth in countries with low levels of human capital, although there is a positive income effect. The negative effects on growth would arise by drawing resources from other economic sectors capable of generating further economic growth. Our model, and the evidence we present, show that the main resource that can be drawn from growth enhancing activities is human capital. Having high levels of human capital may minimize this effect.

However, our evidence suggests that human capital not only partially compensates the negative effects of increasing natural resources on economic growth, as implied by

14 Hecksher (1968) notes that in Sweden was developed the first plant for industrial processing of pulp in the world, and covers the details of Swedish development of metallurgical techniques.

Table 6: Comparative evolution of Income and Exports Per Capita. (1990 Geary Khamis Dollars)

<table>
<thead>
<tr>
<th>Country</th>
<th>GDP per capita</th>
<th>Growth GDP 1870-1913</th>
<th>Exports per capita 1870-1913</th>
<th>Exports Growth 1870-1913</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>1875 3488 16792</td>
<td>1.5</td>
<td>103 299 5808</td>
<td>3.5</td>
</tr>
<tr>
<td>Belgium</td>
<td>2640 4130 16807</td>
<td>1.0</td>
<td>243 955 12211</td>
<td>4.2</td>
</tr>
<tr>
<td>Denmark</td>
<td>1927 3764 17953</td>
<td>1.6</td>
<td>166 501 7642</td>
<td>3.3</td>
</tr>
<tr>
<td>Finland</td>
<td>1107 2050 16604</td>
<td>1.4</td>
<td>177 528 5222</td>
<td>3.9</td>
</tr>
<tr>
<td>France</td>
<td>1858 3452 17777</td>
<td>1.5</td>
<td>91 272 4114</td>
<td>2.8</td>
</tr>
<tr>
<td>Germany</td>
<td>1913 3833 18685</td>
<td>1.6</td>
<td>293 1009 6309</td>
<td>4.1</td>
</tr>
<tr>
<td>Italy</td>
<td>1467 2507 15951</td>
<td>1.3</td>
<td>64 124 3075</td>
<td>2.2</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2640 3950 16569</td>
<td>0.9</td>
<td>478 702 9346</td>
<td>2.3</td>
</tr>
<tr>
<td>Norway</td>
<td>1303 2275 16897</td>
<td>1.3</td>
<td>129 349 9145</td>
<td>3.2</td>
</tr>
<tr>
<td>Sweden</td>
<td>1664 3096 17695</td>
<td>1.5</td>
<td>171 475 6543</td>
<td>3.1</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2172 4207 17695</td>
<td>1.5</td>
<td>416 1484 9312</td>
<td>3.9</td>
</tr>
<tr>
<td>UK</td>
<td>3263 5032 16302</td>
<td>1.0</td>
<td>417 923 3363</td>
<td>2.8</td>
</tr>
<tr>
<td>Australia</td>
<td>3801 5505 16417</td>
<td>0.9</td>
<td>281 704 2732</td>
<td>4.8</td>
</tr>
<tr>
<td>Canada</td>
<td>1620 4213 19599</td>
<td>2.2</td>
<td>194 515 4934</td>
<td>4.1</td>
</tr>
<tr>
<td>New Zealand</td>
<td>3115 5178 13994</td>
<td>1.2</td>
<td>344 729</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>2457 5307 21866</td>
<td>1.8</td>
<td>62 197 1765</td>
<td>2.2</td>
</tr>
<tr>
<td>Portugal</td>
<td>1085 1354 10685</td>
<td>0.5</td>
<td>31 46</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>1376 2255 12170</td>
<td>1.2</td>
<td>52 182 1681</td>
<td>3.5</td>
</tr>
<tr>
<td>Argentina</td>
<td>1311 3797 6581</td>
<td>2.5</td>
<td>124 257 372</td>
<td>5.2</td>
</tr>
<tr>
<td>Brazil</td>
<td>740 839 4812</td>
<td>0.3</td>
<td>87 80 235</td>
<td>1.9</td>
</tr>
<tr>
<td>Chile</td>
<td>1153 2653 6380</td>
<td>2.0</td>
<td>85 201 802</td>
<td>3.4</td>
</tr>
<tr>
<td>Colombia</td>
<td>1236 4917 1200</td>
<td>1.7</td>
<td>48 51 242</td>
<td>2.0</td>
</tr>
<tr>
<td>Mexico</td>
<td>710 1467 4917</td>
<td>1.7</td>
<td>26 158 341</td>
<td>5.4</td>
</tr>
<tr>
<td>Peru</td>
<td>676 1037 3000</td>
<td>1.0</td>
<td>78 94 156</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Table 7: Social Infrastructure Indicators 1870-1910

<table>
<thead>
<tr>
<th>Country</th>
<th>Railroad (Km)</th>
<th>Primary Enrollment</th>
<th>Literacy Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1870</td>
<td>1910</td>
<td>1870</td>
</tr>
<tr>
<td>Austria</td>
<td>6612</td>
<td>22642</td>
<td>40</td>
</tr>
<tr>
<td>Belgium</td>
<td>289</td>
<td>4679</td>
<td>62.5</td>
</tr>
<tr>
<td>Denmark</td>
<td>770</td>
<td>3445</td>
<td>58.3</td>
</tr>
<tr>
<td>Finland</td>
<td>483</td>
<td>3356</td>
<td>26.4</td>
</tr>
<tr>
<td>France</td>
<td>15544</td>
<td>40484</td>
<td>57.4</td>
</tr>
<tr>
<td>Germany</td>
<td>18876</td>
<td>61209</td>
<td>67.4</td>
</tr>
<tr>
<td>Italy</td>
<td>6429</td>
<td>18090</td>
<td>28.6</td>
</tr>
<tr>
<td>Netherlands</td>
<td>1419</td>
<td>3190</td>
<td>59.1</td>
</tr>
<tr>
<td>Norway</td>
<td>359</td>
<td>2976</td>
<td>60.8</td>
</tr>
<tr>
<td>Sweden</td>
<td>1727</td>
<td>13829</td>
<td>56.9</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1421</td>
<td>4463</td>
<td>76.4</td>
</tr>
<tr>
<td>UK</td>
<td>21558</td>
<td>32184</td>
<td>48.7</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td>69.6</td>
</tr>
<tr>
<td>Canada</td>
<td>4211</td>
<td>39799</td>
<td>75</td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>USA</td>
<td>85170</td>
<td>386714</td>
<td>72</td>
</tr>
<tr>
<td>Portugal</td>
<td>714</td>
<td>2448</td>
<td>13.4</td>
</tr>
<tr>
<td>Spain</td>
<td>5454</td>
<td>14694</td>
<td>42.2</td>
</tr>
<tr>
<td>Argentina</td>
<td>732</td>
<td>27713</td>
<td>20.9</td>
</tr>
<tr>
<td>Brazil</td>
<td>745</td>
<td>21326</td>
<td>5.8</td>
</tr>
<tr>
<td>Chile</td>
<td>732</td>
<td>5944</td>
<td>18.7</td>
</tr>
<tr>
<td>Colombia</td>
<td>0</td>
<td>988</td>
<td>5.9</td>
</tr>
<tr>
<td>Mexico</td>
<td>349</td>
<td>19748</td>
<td>16</td>
</tr>
<tr>
<td>Peru</td>
<td>669</td>
<td>2995</td>
<td></td>
</tr>
</tbody>
</table>

our model, but actually it can more than offset it. In our model, a high level of human capital diminishes the growth-reducing effect of the reallocation of resources from a dynamic sector, such as industry, to the exploitation of natural resources. Therefore, further work is needed to fully account for this evidence. Perhaps, in a multisector model with close interlinkages between natural resources and industrial activities it may be possible to formalize the idea of the joint development of an industrial or high-tech sector simultaneously with natural resources, given that the economy is rich in human capital. This is what may have happened in Scandinavia with the development of natural resources and an industrial basis linked to this sector, for example, in forestry. For this process to take place is necessary to be well endowed of human capital.

The aggregate data as well as the review of the Scandinavian experience since late nineteenth century provide supporting evidence for the model presented in the paper. In addition, we have shown that abundance in natural resources leads to higher income, and hence one cannot infer from the growth effects the welfare implications of being rich in natural resources.

In this paper, a country rich in natural resources starts with high levels of income, accumulates human capital, and growth accelerates. In this sense, natural resources are not a curse, although extremely low levels of human capital may cause the economy to stagnate, because it would specialize in a sector with low productivity.
References

Appendix A

Model Derivation and Proofs of Propositions

Thus, the Hamiltonian of the problem (3) can be expressed as follows:

\[J = u(c_t) e^{-\beta t} + \lambda e^{-\beta t} (a(H_I)^{\alpha} H_I^{-\alpha} + p_1 R \cdot H_R^{\delta} c_t) + \tau_2 e^{-\beta t} (H_I + H_R - 1) H \]

The first order conditions of the problem are given by:

\[\frac{dJ}{dc_t} = 0 \iff u'(c_t)e^{-\beta t} = \lambda \cdot \alpha \cdot a \cdot (H_I)^{\alpha} \cdot H_I^{-\alpha} + e^{-\beta t} \cdot \tau_2 = 0 \tag{8} \]

\[\frac{dJ}{dH_I} = 0 \iff \lambda \cdot e^{-\beta t} \cdot \alpha \cdot a \cdot (H_I)^{\alpha} \cdot H_I^{-\alpha} + e^{-\beta t} \cdot \tau_2 = 0 \tag{9} \]

\[\frac{dJ}{dH_R} = 0 \iff \lambda \cdot e^{-\beta t} p_1 \cdot R \cdot \delta \cdot H_R^{\delta-1} + e^{-\beta t} \cdot \tau_2 = 0 \tag{10} \]

\[\frac{dJ}{dH} = -\dot{\lambda} + \lambda \beta = -\tau_2 \Rightarrow \frac{-\dot{\lambda}}{\lambda} + \beta = -\frac{\tau_2}{\lambda} \Rightarrow -\frac{\dot{\lambda}}{\lambda} = \alpha a - \beta \tag{11} \]

Hence we can express the return to human capital accumulation as follows:

\[r_H = -\frac{\tau_2}{\lambda} = \alpha a = p_1 \cdot \delta \cdot H_R^{\delta-1} \]

Finally, we can verify that the system satisfies Michel’s transversality condition\(^\text{16}\)

\[\lim_{t \to \infty} J(t) = 0 \text{ as long as } \alpha a < \beta (1 + \sigma) \]

Proof. Proposition 1

Taking the log and differentiating equation (8) we get:

\[\frac{\dot{c}}{c} = \frac{1}{\sigma} (\alpha \cdot a - \beta) \tag{12} \]

Note that the rate of growth of consumption is constant at any moment of time, and depends on the technology utilized in the industrial sector.

Now we derive the steady state growth rates for each variable. Dividing the budget constraint by the average level of human capital, \(H\), and rearranging:

\[\frac{H_H}{H} = aL - \frac{1}{H} \left(\frac{\alpha a}{p \cdot R \cdot \delta} \right)^{\frac{1}{\sigma}} + \frac{R \left(\frac{\alpha a}{p \cdot R \cdot \delta} \right)^{\frac{1}{\sigma}}}{H} - \frac{c_t}{H} \tag{13} \]

Imposing the fact that in steady state the rates of variation of human capital and consumption are constant and deriving with respect to the time to get:

\(^\text{16}\)See Michel (1982).
\[
0 = \frac{H}{H^2} \left(\frac{p_1 \cdot R \cdot (1 - \delta)}{(1 - \alpha)a} \right)^{1/\delta} - \frac{R(p_1 \cdot R \cdot (1 - \delta)a)}{H} \left(\frac{1 - \delta}{(1 - \alpha)a} \right)^{(1 - \delta) / \delta} H - \left(\frac{\dot{C}}{C} \frac{C}{H} - \frac{H \cdot C}{H \cdot H} \right)
\]

(14)

Multiplying by \(H\) and deriving with respect to time again, implies:

\[
0 = -\left(\frac{\dot{C}}{C} \right) - \left(\frac{H}{H} \right) \dot{C}
\]

Then, in the steady state, human capital and consumption will grow at the same rate. The amount of human capital in the natural resources sector will be constant, while that human capital in the industrial sector will growth at the same rate that the total human capital. Consequently the “reduced” product also will growth at the same rate. It is important to note that the evolution of the variables in steady state doesn’t depend on the relative abundance of natural resources, and that the growth rate of the economy depends just on the productivity of the sector with externalities.

\[\text{Proof. Proposition 2}\]

The first order conditions have some interesting implications with respect to the evolution of the productive structure of the economy. In order to analyze them, we first solve \(H_R\), which can be expressed:

\[
H_R = \left(\frac{p_1 \cdot R \cdot \delta}{\alpha a} \right)^{\frac{1}{1-\delta}} = \text{constant} = L_R \cdot H
\]

(16)

with \(L_R\) the fraction of the labor force in natural resources. Note that the fraction of human capital working in the natural resources sector is inversely proportional to the level per capita of human capital, \(H\). Consistently with this setting, the industrial sector will produce using a share \(L_I\) of the labor force, which will increase with \(H\). Indeed,

\[
L_I = 1 - L_R = 1 - \frac{1}{H} \left(\frac{p_1 \cdot R \cdot \delta}{\alpha a} \right)^{\frac{1}{1-\delta}}
\]

(17)

At the same time, the output in the natural resources sector is constant, and as long as the level of human capital grows the fraction of the total output belonging to this sector will be decreasing in the time.

\[\text{Proof. Proposition 3}\]

Differentiating total output yields:
\[
\frac{d}{dR}(Y_0) = \frac{d}{dR} \left[a \cdot (H - H_e - H_R(R))^{\alpha} \cdot \frac{1}{H_R(R)} + p_1 \cdot R \cdot H_R^\delta(R) \right] = \\
= -a \cdot \frac{\partial}{\partial R} H_R(R) + p_1 \cdot H_R^\delta(R) + p_1 \cdot R \cdot \delta \cdot H_R^{\delta - 1}(R) \cdot \frac{\partial}{\partial R} H_R(R)
\]
(18)

Rearranging the equilibrium conditions for the allocation of labor in the productive sectors as
\[p_1 \cdot R \cdot \delta \cdot H_R^{\delta - 1}(R) - \alpha \cdot a = 0\]
and substituting in equation (18), it can be shown that:
\[
\frac{d}{dR}(Y_0) = c \cdot p_1 \cdot H_R^\delta(R) > 0
\]
(19)

With \[c = \frac{(\alpha - \delta)}{\alpha(1 - \delta)}\]. Therefore under our model assumptions, an increase in the specific factor of the natural resources sector will induce an increase in output per capita.

Transitional dynamics

This analysis closely follows Barro and Sala i Martin (1995). Define \(\psi = \frac{Y}{H_1}\), and \(\chi = \frac{C}{H_1}\).

Then
\[
\dot{\psi} = \frac{d}{dt}(\frac{Y}{H_1}) = \frac{d}{dt}(a + p_1 R H_1^{\delta - 1}) = \frac{d}{dt}(a + \frac{R}{H_1}) = -\frac{\dot{R}}{H_1} \frac{\dot{H}_1}{H_1}
\]

and
\[
\dot{\chi} = (a - \psi) \cdot (\psi - \chi)
\]

Noting that \(\frac{\dot{H}_1}{H_1} = \frac{\dot{H}}{H - H_R} = \frac{\dot{H}}{H_1}\), \(\psi = \chi\), we can express equation (20) as:
\[
\dot{\psi} = (a - \psi) \cdot (\psi - \chi)
\]

Differentiating \(\chi\) respect to the time yields:
\[
\dot{\chi} + \chi \cdot \frac{\dot{H}_1}{H_1} = \frac{C}{H_1} \cdot (\alpha \cdot a - \beta) = \frac{\chi}{\sigma} (\alpha \cdot a - \beta)
\]

\[
\dot{\chi} + \chi \cdot (\psi - \chi) = \frac{\chi}{\sigma} (\alpha \cdot a - \beta)
\]

Hence, the system evolves according to the following two differential equations:
\[
\dot{\psi} = (a - \psi) \cdot (\psi - \chi)
\]
(21)

\[
\dot{\chi} = \frac{\chi}{\sigma} (\alpha \cdot a - \beta) - \chi \cdot (\psi - \chi)
\]
(22)

From Proposition 1 we know that in the steady state all the variables growth at the same rate. Therefore \(\dot{\psi} = \dot{\chi} = 0\), which replaced in equations (21) and (22) allow us to find the steady state values for each one of our variables. Then those are determined by:
\[
(a - \psi_{ss}) \cdot (\psi_{ss} - \chi_{ss}) = 0
\]
(23)
\[\chi_{ss} \left(\frac{\alpha \cdot a - \beta}{\sigma} - \psi_{ss} + \chi_{ss} \right) = 0 \quad (24) \]

Then the system has three steady states, two of them for the level of consumption equal to zero, and one for positive consumption. Indeed the solutions to the equations (23) and (24) are:

\[\{ \psi = 0, \chi = 0 \}, \{ \chi = 0, \psi = a \}, \{ \chi = \frac{-\alpha a + \beta + \sigma a}{\sigma}, \psi = a \} \]

Linearizing the system of equations (21), and (22) around the steady states we get:

\[\begin{bmatrix} \dot{\psi} \\ \dot{\chi} \end{bmatrix} = \begin{bmatrix} a - 2 \cdot \psi_{ss} + \chi_{ss} & -(a - \psi_{ss}) \\ -\chi_{ss} & \frac{1}{\sigma}(\alpha \cdot a - \beta) + 2 \cdot \chi_{ss} - \psi_{ss} \end{bmatrix} \begin{bmatrix} \psi - \psi_{ss} \\ \chi - \chi_{ss} \end{bmatrix} \quad (25) \]

Around the steady state \(\{ \psi_{ss} = 0, \chi_{ss} = 0 \} \) the system is completely unstable. When the equilibria is \(\{ \chi_{ss} = 0, \psi_{ss} = a \} \) the system is completely stable, while for the third equilibrium, \(\{ \chi_{ss} = \frac{-\alpha a + \beta + \sigma a}{\sigma}, \psi_{ss} = a \} \), the system has a saddle path as long as \(-(\alpha a + \beta) < 0 \) and \(\frac{1}{\sigma}(\alpha \cdot a - \beta) + 2 \cdot \frac{-\alpha a + \beta + \sigma a}{\sigma} - a = \frac{-\alpha a + \beta + \sigma a}{\sigma} > 0 \), which seems to be a plausible assumption given standard values for the parameters of the model.

However, noting that the minimum possible value for \(\psi \) is \(a \), the equilibria \(\{ \psi = 0, \chi = 0 \} \) is unfeasible. Given that the second equilibrium is fully stable, we will analyze the dynamic around the third unstable one.

In this third equilibrium the linearized system is:

\[\begin{bmatrix} \dot{\psi} \\ \dot{\chi} \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sigma}(\alpha a - \beta) & 0 \\ -\alpha a + \beta + \sigma a \end{bmatrix} \begin{bmatrix} \psi - a \\ \chi - \frac{-\alpha a + \beta + \sigma a}{\sigma} \end{bmatrix} \]

The solution for the system is the following:

\[\chi = \chi_{ss} + (\chi_0 - \chi_{ss}) \cdot e^{-\frac{1}{\sigma}(\alpha a - \beta) \cdot t} \quad (26) \]

\[\psi - \psi_{ss} = -(\chi - \chi_{ss}) \cdot \left(\frac{-\alpha a + \beta + \sigma a}{\sigma} - \frac{1}{\sigma}(\alpha a - \beta) \right) = (\chi - \chi_{ss}) \cdot \left(\frac{a}{\sigma} - \frac{\psi_{ss}}{\chi_{ss}} \right) = (\chi - \chi_{ss}) \cdot \left(\frac{\psi_{ss}}{\chi_{ss}} \right) \quad (27) \]

Now we can plot the dynamic under the assumptions needed for having the third equilibria with a saddle path. For the figure 1 we use the following parameters values:

\[a = 3.5, \sigma = 1.1, \alpha = 0.8 \text{ and } \beta = 1.05 \]

The steady state condition is given by:

\[\frac{\chi_0}{\chi}(0.8 \cdot 3.5 - 1.05) - \chi \cdot (\psi - \chi) = 0, (10 - \psi) \cdot (\psi - \chi) = 0 \]

Now we will derive the growth rates for income per capita, expressing it as a function of the variables used in linearizing the system. Thus we obtain:

\[\gamma_y = \gamma_\psi + \gamma_{hi} \quad (28) \]

31
From the original system of equations we have:
\[\gamma \psi = \gamma_i \cdot \left(\frac{a}{\psi} - 1 \right) = \gamma_i \cdot \left(\frac{\psi_{ss}}{\psi} - 1 \right) \]
Thus, replacing in equation (28)
\[\gamma_y = \gamma \psi \cdot \left(1 + \left(\frac{\psi}{\psi_{ss} - \psi} \right) \right) = \gamma \psi \cdot \left(\frac{\psi_{ss}}{\psi_{ss} - \psi} \right) \]
Recalling the solution for the linearized system we obtain:
\[\gamma \psi = - \left(\frac{\psi_{ss}}{\chi_{ss}} \right) \cdot \left(\chi_0 - \chi_{ss} \right) \cdot \gamma_{ss} \cdot e^{-(\gamma_{ss} \cdot t)} \]
Therefore, we can express the rate of growth of output as
\[\gamma_y = - \left(\frac{\psi_{ss}}{\chi_{ss}} \right) \cdot \left(\chi_0 - \chi_{ss} \right) \cdot \gamma_{ss} \cdot e^{-(\gamma_{ss} \cdot t)} \]
Using equation (26) and equation (27) this can be reduced to
\[\gamma_y = \left(\frac{\psi_{ss}}{\psi_{ss} - \psi} \right) \cdot \gamma_{ss} \cdot \psi_{ss} \cdot \gamma_{ss} \]
After some algebra and recalling the fact that \(\psi_{ss} = a \) and remembering that \(\gamma_{ss} \) is the steady state growth rate, we can rewrite equation (29) as follows:
\[\gamma_y = a \cdot H_i \cdot \gamma_{ss} = (1 - X_{nr}) \cdot \gamma_{ss} = \gamma_{ss} - \gamma_{ss} \cdot X_{nr} \]
Hence, we have derived the inclusion of the fraction of natural resources exports on GDP as an explanatory variable. This may be consider as an extension of the of previous empirical specifications existing in the literature.
Thus, for proving Propositions 4 we can differentiate equation (29).

\[\text{Proof. Proposition 4} \]
From Proposition 3 we have that:
\[\frac{d}{dR} (Y_0) = c \cdot p_1 \cdot H_R^2 (R) > 0 \]
Now we can express the human capital allocated in the industrial sector as function of the total human capital and the specific factors. This is: \(H_i = H - H_R = H - \left(\frac{\alpha a}{p \cdot R \cdot \gamma} \right)^{\frac{1}{\gamma - 1}} \)
Therefore, we can express the total derivative of the growth rate with respect to the specific factor in the natural resources sector as follow:
\[\frac{d}{dR} (\gamma_y (R, H, Z)) = K_0 \cdot \frac{d}{dR} \left(\frac{H_i}{Y} \right) = \frac{\partial}{\partial R} (H_i) Y - H_i \frac{\partial}{\partial R} (Y) \]
Noting that \(\frac{\partial}{\partial R} (H_i) < 0 \) and \(\frac{\partial}{\partial R} (Y) > 0 \), we proved that \(\frac{d}{dR} (\gamma_y (R, H, Z)) < 0 \)
Now, after some manipulations on \(\frac{d}{dR} (\gamma_y (R, H, Z)) \) we can derive \(\frac{d^2}{dhdR} (\gamma_y (R, H, Z)) \), which can be rewritten as:
\[
\frac{d^2}{dHdR}(\gamma_y(R, H, Z)) = c \cdot H_R^2 \cdot (2 \cdot \frac{Y_I}{Y_{Total}} - 1) + 2 \cdot a \cdot \frac{H_R}{R} \left(\frac{1}{1 - \delta} \right) \tag{33}
\]

If \(R \) is big enough the fraction of production in the industrial sector is small (the same can be argued for low level of human capital) and the first term becomes negative, while the second term will be small. On the other hand, we might note that for any value of \(R \) there exists a level of human capital such that equation (33) is positive because the fraction of GDP belonging to the industrial sector is and increasing function of the level of human capital accumulation. Whether the total effect is negative will depend on the parameters. What it is guaranteed is the existence of \(H^* > 0 \), and hence \(H^* > 0 \) such that \(\forall H > H^* \) the cross differentiation is positive. \(\blacksquare \)

Natural Resources and zero growth

In this section we assume that given the productivity of each of the two sector, and the initial level of human capital, the economy will produce just in the natural resources sector. For that we need to impose

Assumption 2
*Given the population in the economy, the marginal productivity of human capital in the natural resources sector is greater than \(\alpha \cdot a \), which implies \((\frac{p - R\delta}{\alpha a})^{\frac{1}{1-\sigma}} > H_0. \) we also assume that \(\beta > \alpha a. \)

Note that the first condition, just implies relative abundance of natural resources with respect to the factor specific to the industrial sector. Hence, there may be cases where this relative abundance can induce greater welfare levels even in absence of growth, when compared with the alternative of non-production in the natural resources but with positive growth rate.

Thus, the problem is reduced to a simplified version of the Ramsey model:

\[
Max \int_0^{\infty} \frac{\delta^{1-\sigma}}{(1-\sigma)} \cdot e^{-\beta t} dt \\
\text{st} \quad \dot{H} = p_1RH_R^\delta - C_t
\tag{34}
\]

After redefining constants and variables in per capita terms the problems reduces to impose first order conditions over the following Hamiltonian:

\[
J = u(C_t) \cdot e^{-\beta t} + \lambda \cdot e^{-\beta t}(pRH_R^\delta - c_t)
\]

\[
\frac{dJ}{dc_t} = 0 \iff u'(c_t)e^{-\beta t} = \lambda
\]

\[
\frac{dJ}{dH} = -\dot{\lambda} + \lambda \beta = \lambda p_1 \delta RH_R^\delta - 1 \Rightarrow \frac{\dot{\lambda}}{\lambda} + \beta = p_1 \delta RH_R^\delta - 1
\]

Proof. Proposition 5
Taking the log and differentiating $\frac{dJ}{dC} = 0$, we get

$$\frac{\dot{c}}{c} = \frac{1}{\sigma} (p_1 \delta RH^{\delta-1} - \beta)$$

(35)

As usual, in the steady state the economy grows at rate zero, because the firm utilizes human capital up to the point at which decreasing returns to human capital equalizes the discount rate of the representative agent. Consequently, there are no incentives for human capital accumulation. If eventually there is more human capital than can be utilized in the natural resources sector, there may be deaccumulation of human capital.

In order to analyze the steady state growth rates, we divide by H and differentiate the budget constraint getting

$$\frac{d}{dt} \frac{\dot{H}}{H} = \frac{d}{dt} p_1 \delta RH^{\delta-1} - \frac{d}{dt} \frac{\dot{C}_t}{H}$$

$$0 = 0 - \frac{\dot{C}_t}{H} (\gamma_c - \gamma_H)$$

Thus, we have that:

$$\gamma_c = \gamma_H = 0.$$

(36)
Appendix B: Data

Penn World Tables, version 5.6: Real GDP per capita in constant dollars, base 1985 (RGDPCH), Real Investment share of GDP (I), Real Government share of GDP (G), Openness (Exports+Imports)/GDP (OPEN)

Barro and Lee Database, 1994.: Average schooling years in the total population over age 25 (HUMAN), Average schooling years in the male population over age 25 (HUMAN (MALE)), Average years of secondary schooling in the total population over age 25 (SYR)

World Tables CD Rom, 1993-1996. The following variables

Exports of Fuel: Comprise commodities in SITC Revision 1, Section 3 (Mineral Fuels and Lubricants and related Materials); (TX VAL FUEL CD)

Exports of Non Fuel Primary Products: commodities in SITC Revision 1, Sections 0,1,2,4, and Division 68 (food and live animals, beverages and tobacco, inedible crude materials, oils, fats, waxes, and non ferrous metals); (TX VAL NFPP CD).

Exports of Metals and Minerals: Exports of metals and minerals comprise commodities in SITC Revision 1, Sections 27 (crude fertilizer, minerals nes), 28 (metalliferous Ores, Scrap) and 68 (Non-Ferrous Metals); (TX VAL METM CD).

GDP at Market Prices: Measures the total output of goods and services for final use occurring within the domestic territory of a given country, regardless of the allocation to domestic and foreign claims. Gross Domestic Product at purchaser values (market prices) is the sum of GDP at factor cost and indirect taxes less subsidies. Data are expressed in current US dollars.

The figures for GDP are dollar values converted from domestic currencies using single year official exchange rates. For a few countries where the official exchange rate does not reflect the rate effectively applied to actual foreign transactions, an alternative conversion factor is used.

Merchandise Exports: refer to all movable goods (excluding non monetary gold) involved in a change of ownership from residents to nonresidents. Merchandise exports are valued free on board (F.O.B) at the customs frontier includes the value of the goods, and the value of outside packaging, and related distributive services used up to, and including, loading the goods onto the carrier at the customs frontier of the exporting country. (TX VAL MRCH CD)
Merchandise Imports: Merchandise imports refer to all movable goods (excluding non-monetary gold) involved in a change of ownership from non-residents to residents. Merchandise imports are valued at their c.i.f. (cost, insurance and freight) price. In principle, this price is equal to the f.o.b. transaction price plus the costs of freight and merchandise insurance involved in shipping goods beyond the f.o.b. point. Data are in current U.S. dollars.

The primary source is the UNCTAD database supplemented with data from the UN COMTRADE database, IMF’s International Financial Statistics, national and other sources. Because of the source change the data for some countries may differ significantly from those presented last year. Also, export and import component values may not sum to the total shown. (TM VAL MRCH CD).

All the previous variables expressed in current US$ dollars.

Merchandise Export Price Index: This item is a price index measuring changes in the aggregate price level of a country’s merchandise exports f.o.b. over time. (TX PRI MRCH XD).

Merchandise Import Price Index: This item is a price index measuring changes in the aggregate price level of a country’s merchandise imports c.i.f. over time. (TM PRI MRCH XD).
Income path for an economy with natural resources

Figure 1: Growth path

Figure 2: Growth and Natural Resource Abundance
Figure 3: Income and Natural Resource Abundance

Figure 4: Phase diagram
La serie de Documentos de Trabajo en versión PDF puede obtenerse gratis en la dirección electrónica: http://www.bcentral.cl/Estudios/DTBC/doctrab.htm. Existe la posibilidad de solicitar una copia impresa con un costo de $500 si es dentro de Chile y US$12 si es para fuera de Chile. Las solicitudes se pueden hacer por fax: (56-2) 6702231 o a través de correo electrónico: bcch@condor.bcentral.cl

Working Papers in PDF format can be downloaded free of charge from: http://www.bcentral.cl/Estudios/DTBC/doctrab.htm. Printed versions can be ordered individually for US$12 per copy (for orders inside Chile the charge is Ch$500.) Orders can be placed by fax: (56-2) 6702231 or e-mail: bcch@condor.bcentral.cl

DTBC-138
Depreciación del Capital Natural, Ingreso y Crecimiento Sostenible: Lecciones de la Experiencia Chilena
Eugenio Figueroa B. y Enrique Calfucura T.

DTBC-137
The Distribution of Stochastic Shrinkage Parameters in Ridge Regression
Hernán Rubio y Luis Firinguetti

DTBC-136
Value at Risk: Teoría y Aplicaciones
Christian A. Johnson

DTBC-135
Agency Problems in the Solutions of Banking Crises
Gonzalo I. Sanhueza

DTBC-134
On the Determinants of the Chilean Economic Growth
Rómulo A. Chumacero y J. Rodrigo Fuentes

DTBC-133
Cálculo del Stock de Capital para Chile, 1985-2000
Ximena Aguilar M. y María Paz Collinao

DTBC-132
Políticas de Estabilización en Chile durante los Noventa
Carlos José García T.
DTBC-131
Ten Years of Inflation Targeting: Design, Performance, Challenges
Norman Loayza y Raimundo Soto

DTBC-130
Trends and Cycles in Real-Time
Rómulo A. Chumacero y Francisco A. Gallego

DTBC-129
Alternative Monetary Rules in the Open-Economy: A Welfare-Based Approach
Eric Parrado y Andrés Velasco

DTBC-128
Price Inflation and Exchange Rate Pass-Through in Chile
Carlos José García y Jorge Enrique Restrepo

DTBC-127
A Critical View of Inflation Targeting: Crises, Limited Sustainability, and Aggregate Shocks
Michael Kumhof

DTBC-126
Overshootings and Reversals: The Role of Monetary Policy
Ilan Goldfajn y Poonam Gupta

DTBC-125
New Frontiers for Monetary Policy in Chile
Pablo S. García, Luis Oscar Herrera y Rodrigo O. Valdés

DTBC-124
Monetary Policy under Flexible Exchange Rates: An Introduction to Inflation Targeting
Pierre-Richard Agénor

DTBC-123
Targeting Inflation in an Economy with Staggered Price Setting
Jordi Gali

DTBC-122
Market Discipline and Exuberant Foreign Borrowing
Eduardo Fernández-Arias y Davide Lombardo

DTBC-121
Japanese Banking Problems: Implications for Southeast Asia
Joe Peek y Eric S. Rosengren